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ABSTRACT

In the photochemical bis-germylation of C60 with 1,1,2,2-tetrakis(2,6-diethylphenyl)-1,2-digermirane (1), a cycloadduct (2) is obtained in high
yield for the first time. Spectroscopic analysis and theoretical investigation confirm that 2 (which has C1 symmetry) results from 1,4-cycloaddition.
Control experiments and laser flash photolysis experiments suggest that an exciplex intermediate is responsible for the formation of 2. The
redox properties of 2 were examined by differential pulse voltammetry.

Numerous fullerene chemical transformations have been
developed since the isolation of C60 in preparatively useful
quantities.1 Among the various reactions to be used for
functionalization of C60, cycloaddition reactions2,3 have been
successfully employed for the preparation of ring-fused C60

derivatives.1 It has been found that photoexcited C60 is a

strong electron acceptor4 and strained Si-Si5 and Ge-Ge6

σ bonds can act as an electron donor. We have recently
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reported that the photochemical cycloaddition of C60 with a
disilirane takes place to afford 1,2-cycloadduct via the
intermediacy of an exciplex.2b,7 We report here the novel
photochemical bis-germylation of C60 with a digermirane as
the first example of 1,4-cycloaddition, which would lead to
a new route to synthetically useful bis-germylation chemistry.

Irradiation of a degassed toluene solution of 1,1,2,2-
tetrakis(2,6-diethylphenyl)-1,2-digermirane8 (1, 3.3× 10-3M)
and C60 (3.3 × 10-3M) with a high-pressure mercury-arc
lamp (cutoff <300 nm) resulted in formation of the bis-
germylated cycloadduct (2)9 quantitatively with complete
consumption of C60 (Scheme 1). Pure2 can be readily

isolated in 61% yield by preparative HPLC. The digermirane
was thermally unreactive toward C60 at 100°C.10

FAB mass spectrometry of2 (C101H54Ge2) displays a peak
for 2 at m/z1416-1412 as well as a C60 peak atm/z723-
720 which arises from loss of1.

The1H NMR spectrum of2 displays eight methyl signals
at 1.54, 1.31, 0.87, 0.78, 0.77, 0.71, 0.54, and 0.50 ppm and
16 methylene signals on the ethyl groups between 4.2 and
2.4 ppm. An AB quartet (J ) 14.3 Hz) for the two methylene
protons was also observed at 2.60 and 2.40 ppm. In the H-H
COSY NMR spectrum, two cross-peaks corresponding to
the methylene protons were observed at 2.60 and 2.40 ppm.
The resolved 125 MHz13C NMR spectrum showed the C60

adduct resonances which are expected for aC1-symmetrical
compound. Except for the two bridgehead resonances at 66.2
and 65.9 ppm, all fullerene13C NMR signals appeared in
the spectral range between 165 and 135 ppm. In the H-C
COSY NMR spectrum, two cross-peaks corresponding to
the methylene protons at 2.60 and 2.40 ppm and one cross-
peak due to the methylene carbon atom of the digermirane

component at 19.4 ppm were observed. These spectral data
suggest that the cycloadduct2 has C1 symmetry. As is
apparent from the consideration of molecular modeling,2
must result from either 1,2-cycloaddition or 1,4-cyclo-
addition.

In the INADEQUATE (Incredible Natural Abundance
Double Quantum Experiment) NMR spectrum of2 obtained
from carbon-13-enriched (10%) C60, a cross-peak corre-
sponding to two sp3 carbon atoms of the fullerene skeleton
was not observed at 66.2 and 65.9 ppm, indicating that there
is no connectivity between them. As shown in Figure 1, each

of the sp3 carbon atoms has three cross-peaks associated with
the sp2 carbon atoms of the fullerene component. These
results clearly reveal that2 results from 1,4-cycloaddition.11
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Scheme 1

Figure 1. Expansion of the 125 MHz INADEQUATE NMR
spectrum of2.
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As Table 1 shows, full geometry optimization was carried
out for the 1,2-cycloadducts (a andb) and 1,4-cycloadducts
(c, d, ande) at the AM1 level.12 The 1,2-adducts are less
stable than the 1,4-cycloadducts, and haveCs (a) andC2 (b)
symmetry (notC1 symmetry). It is notable that the most
stable is the structure (e) resulting from 1,4-cycloaddition
which hasC1 symmetry in the twisted form. This agrees with
the experimental finding from spectroscopic data. The
optimized structure ofe is shown in Figure 2. Analysis of

the HC three-bond coupling in the gradient HMBC NMR
spectrum, which is associated with the dihedral angles
between the methylene protons and the sp3 carbon atoms,

gave crucial evidence for the twisted form, as shown in
Figure 3. Fore one proton of a methylene group couples

with one sp3 carbon atom and another proton couples to
another sp3 carbon atom, whereas, forc andd, one proton
of a methylene group couples with two sp3 carbon atoms of
the fullerene skeleton and another proton does not couple
with any sp3 carbon atom. In Figure 3, two cross-peaks
corresponding to a proton of the methylene group at 2.60
ppm and a sp3 carbon atom at 65.9 ppm, and a proton at
2.40 ppm and a carbon atom at 66.2 ppm, respectively, were
actually observed. Coalescence of the methyl signals at 0.87
and 0.78 ppm at 75°C reflecting conformational change of
the molecule was observed, yielding an activation energy
∆Gq ) 17.8 kcal/mol.13 This high barrier is ascribed to the
fact that the space between C60 and 2,6-diethylphenyl groups
as well as between 2,6-diethylphenyl groups becomes filled
upon transformation from one twist-conformer to the other.

The redox properties of2 were examined by cyclic (CV)
and differential pulse (DPV) voltammetries.14 Table 2 shows
the redox potentials of carbon- (3),14 silicon- (4),14 and
germanium-containing (2) organofullerenes. The electron
affinities of these organofullerenes decrease in the order3
> 2 > 4, which is in accord with the electronegativity order
of the attached atoms. This is in agreement with the
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(13) ∆Gq values were calculated according to the Eyring equation.
(14) Suzuki, T.; Maruyama, Y.; Akasaka, T.; Ando, W.; Kobayashi, K.;

Nagase, S.J. Am. Chem. Soc.1994,116, 1359.

Table 1. Relative Energies (kcal/mol) of Isomers of2

Figure 2. Three views of the twistedC1 structure (e) of 2 optimized
with the AM1 method.

Figure 3. Expansion of the HMBC NMR spectrum of2.
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calculations which indicate that the LUMO levels increase
in the order3 (-2.80 eV)< 2 (-2.59 ev)< 4 (-2.49 ev).
Interestingly, 2 shows two oxidation peaks by DPV as
previously observed for4.14 The salient feature in Table 2
is that2 has a remarkably low oxidation potential (+0.59 V
vs Fc/Fc+couple), as does4 (+0.60 V), compared to the
value of3 (+1.03 V). This result is in agreement with the
fact that the HOMO levels of2 (-8.73 eV) and4 (-8.68
ev) are higher than that of3 (-9.24 eV). It may thus be
assumed that partial charge transfer into C60 from the
germanium group in2 occurs, as in the case of4.14

The free energy change (∆G) for electron transfer from1
to the triplet state of C60 is 6.0 kcal/mol.4a,15 Consumption
of 1 was suppressed by addition of 10 equiv of diazabicyclo-
[2.2.2]octane (Ep) 0.70 V vs SCE)16 and 100 equiv of
1,2,4,5-tetramethoxybenzene (Ep) 0.79 V vs SCE),16 each

of which has a low oxidation potential as well as1 and is
unreactive to photoreaction of C60. No absorption is observed
at λ > 400 nm for 1. The photochemical cycloaddition
smoothly proceeds upon irradiation atλ > 400 nm where
C60 is the only light-absorbing component. One plausible
rationale for these observations is that an exciplex intermedi-
ate derived from1 and the triplet state of C60 may be
responsible for formation of2.2b The transient absorption
band at 740 nm due to3C60* in benzene obtained by 532
nm laser photolysis of C60 decays in the presence of
digermirane1 without generation of C60 anion radical at 1070
nm.7,17 The decay rates of the transient absorption band of
3C60* increase with concentration of1. These results may
suggest the exciplex formation between1 and3C60* as occurs
for the case of disilirane.7
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Table 2. Redox Potentials of C60, 2, 3, and4a

2674 Org. Lett., Vol. 2, No. 17, 2000


